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Abstract

To overcome the limitations of conventional DOE-based optimization in enhancing photolithography precision, this
study proposes a Gradient Boosting Regression (GBR) method that effectively captures nonlinear interactions among
process variables. Experiments using RPM, exposure time, and develop time compared DOE and machine learning
techniques on collected data. The machine learning approach yielded superior performance across major quality
indicators versus DOE. However, for fine patterns, high sensitivity to process variations necessitates improved model
precision and expanded data. This study demonstrates that machine learning-based optimization can accurately model
complex process interactions and suggests directions for further enhancement in semiconductor mass production.
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Fig. 1. Mask pattern on the wafer: (a) Full mask pattern;
(b) Single die pattern.
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Table 1. Experimental Variables and Levels.
Level 1 Level 2 Level 3
RPM 3000 5000 7000
Exposure Time 5 15 15
(sec)
Develop Time 9 10 10
(sec)

I
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Table 2. Experimental Design.

2. Ad 44

No. RPM : Exposure Time | Develop Time
(sec) (sec)
1 3000 5 2
2 3000 5 10
3 3000 5 40
4 3000 15 2
5 3000 15 10
6 3000 15 40
7 3000 45 2
8 3000 45 10
9 3000 45 40
10 5000 5 2
11 5000 5 10
12 5000 5 40
13 5000 15 2
14 5000 15 10
15 5000 15 40
16 5000 45 2
17 5000 45 10
18 5000 45 40
19 7000 5 2
20 7000 5 10
21 7000 5 40
22 7000 15 2
23 7000 15 10
24 7000 15 40
25 7000 45 2
26 7000 45 10
27 7000 45 40
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Table 3. Collected Experimental Data.
Pattern Size | No. Y, Y, Y, .Avg Stdev RE (%) S/N Ratio
; : Diameter : :
©99.43525 ¢ 99.40828 i 99.41598 i 99.41984 : 0.013893 : 0.580165 39.9495
P 98.19419 i 96.43948 i 98.33333 | 97.65567 | 1.055544 i 2.344333 39.7945
100 13 102.1056 100.3045 | 1003431 | 100.9177 } 1028884 0.917727 : 40.0798
16 i 103.6361 i 99.21455 99.7943 100.8817  2.402978 : 0.881653 40.0787
21 i 99.99528 i 99.91025 i 100.1963 i 100.0339 i 0.14687 i 0.03393 40.003
22§ 1017191 : 1017423 | 100.4282 i 101.2965 : 0.752091 : 1.296497 : 40.1121
P 49.39587 | 49.36504 : 49.40743 i 49.38945 i 0.021911 : 1.221102 i 33.8727
P 47.95692 i 46.75877 i 48.15017 i 47.62195 i 0.753758 | 4.756093 33.5572
S0 13 i 5218523 | 50.13678 51.08 51.134 | 1025292 | 2268007 i 34.1759
16 5160548 i 49.19372 i 49.68844 : 50.16255 : 1.273864 : 0.325093 34.0104
21 1 49.98991 i 50.08267 i 49.95899 : 50.01052 : 0.064365 : 0.021047 33.9812
22 1 51.33493 i 51.49726 | 52.03063 : 51.62094 : 0.363967 i 3.24188 34.2567
} 9159372 | 8955145 : 9.036065 i 9.050194 i 0.102844 i 9.498061 : 19.1337
P 801601 | 6.29995 7.73 7.348653 | 0919394 | 26.51347 17.3916
g 13 1083 © 9.37649 10.83 10.3455 0.839184 3.454967 20.3235
16§ 1011857 i 8.84312 9.36103 9.440907 : 0.641466 : 5.590933 19.5203
21  9.91759 9.61612 9.54655 9.69342 | 0.197229 i  3.0658 19.7313
22 1 10.73697 | 12.19794 11.4404 11.45844 i 0.730652 : 14.58437 21.2001
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4 3H 2A Z3HANOVA &4)
Table 4. ANOVA Analysis Results for Regression.
Pz;titzeem Source DF Adj SS Adj MS F-value P-value
Regression 3 46.9595 15.6532 19.81 0.000
RPM 1 0.6399 0.6399 0.81 0.378
100um | Exposure Time 1 21.0560 21.0560 26.65 0.000
Develop Time 1 26.0700 26.0700 : 33.00 : 0.000
Error 22 17.3803 07900 i - -
Regression 3 50.9045 16.9682 : 26.03 : 0.000
RPM 1 0.3626 0.3626 0.56 0.464
50um Exposure Time 1 23.1686 23.1686 35.54 0.000
Develop Time 1 28.4863 28.4863 : 43.70 : 0.000
Error 22 14.3401 0.6518 - -
Regression 3 54.6585 18.2195 i 29.07 : 0.000
RPM 1 0.6302 0.6302 1.01 0.327
10um Exposure Time 1 25.9861 25.9861 41.46 0.000
Develop Time 1 29.0617 29.0617 : 46.37 : 0.000
Error 22 13.7881 0.6267 - -
E 5 Minitab 7|8 21X =4 24 Z1} 4. 23t Aot vl 9 2N
Table 5. Optimization Results Based on Minitab. 7k HA5 W o] =S H)wsky] 98 Minitabz} o
RPM Tfﬁniozgi) T?rieve(lsgc) Desirability Ay o R BEE 27 A A 28t
A3E HI1eA Minitab 7|¥+ #24o|4+= RPM
3000.0 5.0 21.9794 0.9271 42 F7heilt. Minitab 7] A

E 6 ofddd =Y HI X E

Table 6. Performance Metrics of Machine Learning Model.

Model Type MAE MSE RMSE R?
Normalized : : :
RE Prediction| 0.132269: 0.046748: 0.216213} 0.979966
Model : : :
S/N Ratio : : :
Prediction |0.051767:0.006641:0.081494 :0.999913
Model : : :
7. MY Jigk 2y =H M Z3f

Table 7. Optimization Results Based on Machine Learning.

Exposure Develop .
RPM Time (sec) | Time (sec) Desirability
3524.87 25.26 15.77 0.9726
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Table 8. Comparison of Optimal Conditions from Minitab and Machine Leaming with Actual Machine Settings.

=]
=

A

RPM Exposure time (sec) Develop time (sec)
Minitab Optimal Conditions 3000.0 5.0 21.9794
Machine Setting 3000 5 22
ML Optimal Conditions 3524.87 25.26 15.77
Minitab Setting 3500 25 16
# 9 o[u® HAM =AM TS MY O 0lE
Table 9. Experimental Data Obtained Under Minitab Optimal Conditions.
Pattern Size Y, Y, Y, : Avg Diameter : Stdev RE (%) S/N Ratio
102.09 101.93 i 100.05 : 101.3567 1.134431 1.356667 40.1176
102.34 102.2 P 102.24 102.26 0.072111 2.26 40.1941
100 101.84 102.22 102.23 102.0967 0.222336 2.096667 40.1803
101.22 101.94 : 101.89 101.6833 0.402036 1.683333 40.1451
102.14 101.74 i 102.07 101.9833 0.21362 1.983333 40.1706
101.84 103.87 i 102.23 102.6467 1.077234 2.646667 40.2274
50.87 51.32 51.27 51.15333 0.246644 2.306667 34.1776
50.92 51.72 51.31 51.31667 0.400042 2.633333 34.2054
50 51.24 50.99 49.5 50.57667 0.940762 1.153333 34.0805
51.2 51.73 : 50.56 51.16333 0.585861 2.326667 34.1797
51.23 51.05 : 50.56 50.94667 0.346747 1.893333 34.1425
50.92 51.81 51.14 51.29 0.463573 2.58 34.201
10.39 11.01 10.42 10.60667 0.349619 6.066667 20.5163
10.4 10.32 10.51 10.41 0.095394 4.1 20.3494
10 10.34 10.95 10.25 10.51333 0.380832 5.133333 20.4405
10.41 10.06 : 10.26 10.24333 0.175594 2.433333 20.2101
10.44 10.26 : 10.32 10.34 0.091652 3.4 20.2908
10.41 10.81 : 10.41 10.54333 0.23094 5.433333 20.4616
# 0 10. oAY 22X =AM as AE HolH
Table 10. Experimental Data Obtained Under Machine Learning Optimal Conditions.
Pattern Size Y, Y, Y, : Avg Diameter Stdev RE (%) S/N Ratio
99.44875 98.6849 : 100.0294 i 99.38769 i 0.674343 0.612307 39.9469
99.75273 100.73 ¢ 100.0606 100.1811 0.499654 0.181114 40.0158
100 99.94759 99.75273 99.78781 99.82938 0.103868 0.170624 39.9852
99.5228 100.805 @ 100.084 100.1373 0.642747 0.137255 40.0121
100.0333 100.6218 @ 100.6881 100.4477 0.360408 0.447732 40.0389
101.2 100.5517 i 100.2282 100.6599 0.494873 0.659949 40.0572
49.61688 48.98822 i 49.89938 49.50149 0.466415 0.99701 33.8928
49.88745 48.8967 : 49.80389 49.52935 0.549477 0.941306 33.8978
50 49.87551 49.81981 : 49.84766 49.84766 0.027852 0.304682 33.9529
49.19512 50.53601 : 51.24 50.32371 1.038839 0.647419 34.0373
51.62623 50.67527 i 50.35696 50.88615 0.66039 1.772304 34.1327
50.21372 50.48428 i 50.26942 50.32247 0.142872 0.644949 34.0353
9.85351 10.07324 : 9.81992 9.915557 0.137587 0.844435 19.9272
9.616134 9.681165 : 10.23622 9.844505 0.340787 1.554947 19.8691
10m 9.97462 9.91759 i 9.741736 9.877982 0.121389 1.220183 19.894
9.912669 9.875678 i 9.76631 9.851553 0.076104 1.484475 19.8704
9.819599 9.827234 i 10.40093 10.01592 0.333448 0.159199 20.0186
10.65284 10.7691  : 10.77879 10.73358 0.070091 7.335756 20.6151

(24)
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Pattern Size Method Avg Diameter : Stdev : RE (%) :  S/Nratio Cpk
1000 Minitab 102.0044 i 0.520295 2.004444 40.1724 1.91914
ML 100.1072 0462649 | 0368163 | 400093 i  3.525216
S0y Minitab 51.07444 0497271 | 2.148889 : 341643 | 0.955585
ML 50.06847 0480974 : 0.884612 : 339913 i 1685141
Lopom Minitab 10.44278 0.220672 4.427778 20.3773 0.086436
ML 10.03985 0179901 i 2099832 i 200317 |  0.852602
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