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Ⅰ. 서 론

포토리소그래피는 반도체 제조 공정에서 패턴을 형

성하는 핵심 단계로, 공정 변수의 최적화를 통해 패턴 

전사 정확도를 확보하는 것이 매우 중요하다[1]. 특히, 

공정 조건의 미세한 변화는 패턴 형성 품질에 결정적인 

영향을 미치므로, 최적화된 공정 조건의 도출은 반도체 

양산 공정의 수율 및 품질을 결정짓는 핵심 요소로 작

용한다. 따라서 균일한 패턴 형성과 변동성 최소화를 

위한 체계적인 공정 최적화 방법론이 요구된다.

기존에는 실험계획법(Design of Experiments, DOE)

을 활용하여 최적의 공정 조건을 최적화하는 방식이 널
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요 약

포토리소그래피 공정의 정밀도 향상을 위한 기존 DOE 기반 최적화의 한계를 보완하고자, 본 연구에서는 변수 간 비선형 상호

작용을 효과적으로 반영하는 Gradient Boosting Regression(GBR) 기반 공정 최적화 기법을 제안하였다. 회전 속도, 노광 시간, 

현상 시간을 변수로 설정해 수집된 데이터에 DOE와 머신러닝 기법을 적용하였다. 그 결과, 머신러닝 기반 최적화 조건은 DOE 

대비 주요 품질 지표에서 전반적으로 우수한 성능을 보였다. 다만, 미세 패턴에서는 높은 공정 민감도로 인해 모델 정밀도 향상과 

추가적인 데이터 확보가 필요한 것으로 나타났다. 본 연구는 머신러닝 기반 최적화가 공정 변수 간 복잡한 상호작용을 정밀하게 

반영함을 실험적으로 입증하였으며, 미세 패턴 대응을 위한 개선 방향을 제시함으로써 반도체 양산 공정 최적화에 기여 가능성을 

확인하였다.

Abstract

To overcome the limitations of conventional DOE-based optimization in enhancing photolithography precision, this 

study proposes a Gradient Boosting Regression (GBR) method that effectively captures nonlinear interactions among 

process variables. Experiments using RPM, exposure time, and develop time compared DOE and machine learning 

techniques on collected data. The machine learning approach yielded superior performance across major quality 

indicators versus DOE. However, for fine patterns, high sensitivity to process variations necessitates improved model 

precision and expanded data. This study demonstrates that machine learning-based optimization can accurately model 

complex process interactions and suggests directions for further enhancement in semiconductor mass production.
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리 사용되어 왔다[2]. 그러나 DOE는 실험 데이터가 제

한적인 경우 변수 간의 비선형적인 관계를 충분히 반영

하지 못하고, 이로 인해 최적 조건 도출의 정확성이 낮

아지는 한계를 가진다[3]. 이러한 한계를 보완하기 위한 

대안으로 최근에는 머신러닝 기반의 공정 최적화 기법

이 주목받고 있으며, 보다 정밀하고 안정적인 패턴 형

성을 가능하게 할 수 있는 방법으로 제시되고 있다[4].

본 연구는 DOE 기반의 공정 최적화와 머신러닝 기

반 접근법을 비교·분석하여, 반도체 양산 공정에 실질

적으로 적용 가능한 최적화 방법론을 제안하고자 한다. 

이를 위해 포토리소그래피 공정의 주요 변수인 RPM, 

Exposure Time, Develop Time을 실험 변수로 선정

하고, 각가의 기법을 적용하여 최적 조건을 도출하였다. 

나아가 도출된 조건을 실제 공정에 적용하고, 패턴 형

성 결과를 정량적으로 평가하여 머신러닝 기반 최적화 

기법의 실효성을 검증하였다.

Ⅱ. 실험 방법

1. 실험 환경 및 장비

본 연구는 일반적인 반도체 제조 환경에서 사용되는 

포토리소그래피 장비를 기반으로 실험을 수행하였다. 

실험은 웨이퍼 준비부터 감광제(Resist) 도포, 노광

(Exposure), 현상(Develop), CD(Critical Dimension) 

측정 순으로 진행되었으며, 각 단계에서 사용된 주요 

장비는 다음과 같다.

웨이퍼 표면의 수분 제거 및 감광제 접착력 향상을 

위해 위해 SH SCIENTIFIC사의 Drying Oven을 사용

하여 Pre-Bake 공정을 수행하였다. 이어서, PRO WIN

사의 Spin Coater (SP-6)를 이용해 감광제를 도포한 

후, 핫플레이트에서 Soft Bake 공정을 진행하였다.

노광 공정은 PRO WIN사의 Mask Aligner (M-150)

를 사용하였으며, PEB(Post Exposure Bake) 후에는 

TMAH(Tetra-Methyl Ammonium Hydroxide) 기반 

현상액을 적용하여 패턴을 형성하였다. 마지막으로, 

Hard Bake를 통해 패턴 안정성을 향상시켰다.

형성된 패턴의 치수 및 균일성을 분석하기 위해 

SUNNY KOREA사의 MX4R 광학 현미경을 이용하여 

ADI CD를 측정하였다. 이를 통해 공정의 품질 지표를 

산출하고 정량적으로 평가하였다.

2. 웨이퍼 패턴

실험에 사용된 마스크는 다양한 크기의 미세 구조를 

포함하고 있으며, 주로 , ,  크기의 

패턴을 중심으로 분석을 진행하였다. 다양한 크기의 패

턴을 활용함으로써 공정 조건이 패턴 형성에 미치는 영

향을 체계적으로 분석하고, 최적의 공정 조건을 도출하

는 데 집중하였다.

마스크 디자인은 동일한 패턴이 다이(Die) 단위로 배

열된 형태이며, 웨이퍼 전체에 균등하게 전사되도록 설

계되었다. 그림 1은 마스크 마스크 전체 분포(a)와 단

일 다이 내 패턴 구조(b)를 각각 보여준다.

   

(a) (b)

그림 1. 웨이퍼 상의 마스크 패턴: (a) 마스크 전체 패턴;

(b) 단일 다이(Die) 패턴

Fig. 1. Mask pattern on the wafer: (a) Full mask pattern;

(b) Single die pattern.

3. 품질 평가 지표

패턴 형성 품질을 평가하기 위해 ADI CD 값을 기준

으로 다양한 지표를 활용하였다. 먼저, 목표 패턴 크기

(Target)와의 차이를 정량화하기 위해 상대 오차

(Relative Error, RE)를 산출하였다. 상대 오차는 아래 

식으로 정의된다:

  
 ×    (1)

공정의 반복성과 재현성을 평가하기 위해 동일 조건

에서 반복 실험을 진행하였으며, 각 조건의 표준편차

(Standard Deviation, Stdev)를 계산하였다. 표준편차

는 데이터의 분산을 나타내며, 값이 작을수록 공정 안

정성이 높음을 의미한다. 표준편차는 다음과 같이 정의

된다:

  





  




       (2)

여기서 N은 샘플 개수, 는 개별 측정값, 는 평균

값을 나타낸다. 

또한, 공정의 신뢰성과 변동성을 분석하기 위해 신호

(20)
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대 잡음비(Signal-to-Noise Ratio, S/N Ratio)를 적용

하였으며, 본 연구에서는 Smaller-the-Better 특성을 

기준으로 다음과 같이 정의하였다.

      



      (3)

마지막으로, 공정 일관성과 품질 기준 충족 여부를 

종합적으로 평가하기 위해 공정 능력 지수(Process 

Capability Index, Cpk)를 도출하였다. 공정 능력 지수

는 아래와 같이 정의된다:

  




     (4)

여기서 USL과 LSL은 각각 공정의 상한 및 하한 규

격이며, 는 평균값, 는 표준편차를 의미한다.

4. 데이터 분석 방법

포토리소그래피 공정의 최적 조건을 도출하기 위해 

본 연구에서는 Minitab 기반 DOE와 머신러닝(Machine 

Learning) 기법을 함께 활용하여 데이터를 분석하였다. 

수집된 실험 데이터를 정량적으로 평가하고 공정 변수

들이 패턴 형성에 미치는 영향을 체계적으로 분석하기 

위해 다양한 통계 및 최적화 기법을 적용하였다.

먼저, Minitab을 이용하여 실험을 설계하고 실험 데

이터를 수집하여 각 공정 변수(RPM, Exposure Time, 

Develop Time)가 ADI CD에 미치는 영향을 분석하였

다. 분산 분석(Analysis of Variance, ANOVA)을과 결

정계수( )를 통해 변수의 유의성과 모델의 적합성을 

검토하였으며, 반응 최적화(Response Optimization)를 

통해 최적 조건을 도출하였다.

보다 정밀한 최적화를 위해 머신러닝 기법 분석을 추

가로 수행하였다. 최근 연구에서도 딥러닝 기반 접근을 

통해 리소그래피 공정 최적화의 예측 정확도가 향상된 

바 있으며[5], 본 연구에서는 Gradient Boosting 

Regression(GBR) 모델을 적용하였다. 이는 비선형 관

계를 효과적으로 반영할 수 있는 트리 기반 앙상블 학

습 기법이다[6]. 분석 결과 및 최적 조건 도출은 Ⅲ장에

서 상세히 설명하고자 한다.

Ⅲ. 본 론

1. 실험 설계 및 수행

본 연구에서는 포토리소그래피 공정의 최적 조건을 

도출하기 위해 DOE를 기반으로 실험을 설계하고 수행

하였다. 공정 변수는 RPM, Exposure Time, Develop 

Time으로 설정하였으며, 각 변수는 3개의 수준(Level)

으로 구성하였다. 실험에서 사용된 변수 및 수준은 표 

1에 정리되어 있다.

Full Factorial Design을 적용하여 총   개의 

실험 조건을 구성하였고(표 2), 각 조건에 대해 3회의 

반복 실험을 수행하여 총 81개의 데이터 세트를 확보

하였다. 모든 실험은 동일한 4인치 실리콘 웨이퍼를 사

용하여 진행되었으며, 실험 결과로부터 ADI CD, 표준

편차, 상대 오차, S/N Ratio, Cpk 등의 품질 지표를 산

출하였다. 실험 결과의 일부를 표 3에 제시하였다. 

표 1. 실험 변수 및 수준

Table 1. Experimental Variables and Levels.

Level 1 Level 2 Level 3

RPM 3000 5000 7000

Exposure Time 

(sec)
5 15 45

Develop Time 

(sec)
2 10 40

표 2. 실험 설계

Table 2. Experimental Design.

No. RPM
Exposure Time 

(sec)

Develop Time 

(sec)

1 3000 5 2

2 3000 5 10

3 3000 5 40

4 3000 15 2

5 3000 15 10

6 3000 15 40

7 3000 45 2

8 3000 45 10

9 3000 45 40

10 5000 5 2

11 5000 5 10

12 5000 5 40

13 5000 15 2

14 5000 15 10

15 5000 15 40

16 5000 45 2

17 5000 45 10

18 5000 45 40

19 7000 5 2

20 7000 5 10

21 7000 5 40

22 7000 15 2

23 7000 15 10

24 7000 15 40

25 7000 45 2

26 7000 45 10

27 7000 45 40

(21)
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이후, 확보된 데이터를 바탕으로 Minitab을 이용한 

DOE 분석과 머신러닝 기반 최적화 기법을 각각 적용하

여 공정 변수의 영향력을 분석하고, 두 접근법의 성능

을 비교 평가하였다. 

2. Minitab 기반 최적화 분석

DOE 기반 분석에서는 선형 회귀 모델을 구성하고, 

각 공정 변수가 ADI CD에 미치는 영향을 분석하였다. 

분석 결과는 표 4에 제시하였다. 분산 분석을 통해 변

수의 유의성을 평가한 결과, Exposure Time과 

Develop Time은 ADI CD의 변동성에 통계적으로 유의

미한 영향을 미치는 것으로 나타났다(  ). 반면, 

RPM은 모든 패턴 크기에서 통계적으로 유의미하지 않

은 것으로 분석되었다(  ). 이는 포토리소그래피 

공정에서 Exposure Time과 Develop Time이 패턴 형

성에 더 큰 영향을 미친다는 것을 시사한다.

회귀 분석 결과를 바탕으로 반응 최적화를 수행한 결

과, RPM 3000, Exposure Time 5초, Develop Time 

21.98초일 때 종합 만족도(Desirability) 0.9271을 만

족하는 최적 조건이 도출되었다(표 5). 다만, DOE는 변

수 간의 비선형 상호작용을 충분히 반영하지 못한다는 

점에서 한계가 존재하며, 데이터가 제한적인 경우 모델

의 일반화 성능도 저하될 수 있다. 따라서 이러한 점을 

보완하기 위해 머신러닝 기법을 병행 적용하였다. 

3. 머신러닝 기반 최적화 분석

포토리소그래피 공정 최적화에 있어 머신러닝 기반 

기법은 최근 연구에서 DOE보다 높은 예측 정확도와 성

능을 입증하고 있다[7]. 본 연구에서는 이러한 머신러닝 

기법 중 하나인 GBR을 적용하였다. GBR은 트리 기반 

앙상블 알고리즘으로, 비선형 관계 및 변수 간 복잡한 

상호작용을 효과적으로 학습할 수 있어 공정 조건이 출

력 변수에 미치는 영향을 정밀하게 반영할 수 있다[8].

모델 학습에는 실험 데이터를 활용하였으며, 입력 변

수로는 RPM, Exposure Time, Develop Time을, 목표 

변수로는 ADI CD를 사용하였다. 성능 평가는 평균 절

대 오차(MAE), 평균 제곱 오차(MSE), 평균 제곱근 오

차(RMSE), 결정계수( )를 기준으로 수행되었으며, 

GBR 모델은 R² 값이 0.97 이상으로 높은 설명력을 보

였다(표 6). 이는 실험 데이터를 기반으로 복잡한 변수 

간 관계를 효과적으로 학습하였음을 시사한다.

학습된 모델을 바탕으로 도출한 최적 조건은 RPM 

3524.87, Exposure Time 25.26초, Develop Time 

15.77초로 나타났으며, 종합 만족도는 0.9726으로 분

표 3.실험 수행 후 수집된 데이터

Table 3. Collected Experimental Data.

Pattern Size No.   
Avg 

Diameter
Stdev RE (%) S/N Ratio



3 99.43525 99.40828 99.41598 99.41984 0.013893 0.580165 39.9495

8 98.19419 96.43948 98.33333 97.65567 1.055544 2.344333 39.7945

13 102.1056 100.3045 100.3431 100.9177 1.028884 0.917727 40.0798

16 103.6361 99.21455 99.7943 100.8817 2.402978 0.881653 40.0787

21 99.99528 99.91025 100.1963 100.0339 0.14687 0.03393 40.003

22 101.7191 101.7423 100.4282 101.2965 0.752091 1.296497 40.1121



3 49.39587 49.36504 49.40743 49.38945 0.021911 1.221102 33.8727

8 47.95692 46.75877 48.15017 47.62195 0.753758 4.756093 33.5572

13 52.18523 50.13678 51.08 51.134 1.025292 2.268007 34.1759

16 51.60548 49.19372 49.68844 50.16255 1.273864 0.325093 34.0104

21 49.98991 50.08267 49.95899 50.01052 0.064365 0.021047 33.9812

22 51.33493 51.49726 52.03063 51.62094 0.363967 3.24188 34.2567



3 9.159372 8.955145 9.036065 9.050194 0.102844 9.498061 19.1337

8 8.01601 6.29995 7.73 7.348653 0.919394 26.51347 17.3916

13 10.83 9.37649 10.83 10.3455 0.839184 3.454967 20.3235

16 10.11857 8.84312 9.36103 9.440907 0.641466 5.590933 19.5203

21 9.91759 9.61612 9.54655 9.69342 0.197229 3.0658 19.7313

22 10.73697 12.19794 11.4404 11.45844 0.730652 14.58437 21.2001

(22)
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석되었다(표 7). 이는 기존 DOE 기반 조건보다 높은 

만족도를 나타내며, 머신러닝 기법이 공정 변수 간의 

관계를 정밀하게 반영하여 최적화 성능을 향상시킬 수 

있음을 보여준다.

4. 최적화 결과 비교 및 분석

각 최적화 방법의 성능을 비교하기 위해 Minitab과 머

신러닝 기법으로 도출된 조건을 실제 공정에 적용하여 

결과를 평가하였다. Minitab 기반 분석에서는 RPM 

3000, Exposure Time 5초, Develop Time 21.9794초

가 최적 조건으로 도출되었으며, 머신러닝 기반에서는 

RPM 3524.87, Exposure Time 25.26초, Develop 

Time 15.77초가 도출되었다. 실험에는 반올림된 수치를 

적용하였으며, 실제 장비 설정값은 표 8에 정리하였다. 

두 조건을 기반으로 공정을 수행한 후, 패턴 형성 결

과를 측정하고 ADI CD, 표준편차, 상대 오차, S/N 

Ratio, Cpk 등의 품질 지표를 산출하였다. 각각의 실험 

데이터는 표 9 및 표 10에, 정량적 비교 결과는 표 11

에 제시하였다. 

머신러닝 기반 최적 조건은 평균 CD 값이 목표 치수

에 더 근접하고, 표준편차가 작아 공정 변동성이 감소

한 것으로 나타났다. 상대 오차 또한 낮게 나타났으며, 

S/N Ratio는 높아 공정의 안정성이 향상되었음을 확인

할 수 있었다. 특히,  및  패턴에서는 공정 

능력 지수가 1.33을 초과하여 산업적 공정 안정성 기준

을 만족하였다. 

머신러닝 기반 최적화가 더 우수한 성능을 보인 이유

는 다음과 같다. 우선, Minitab 기반 DOE는 변수 간 독

립성과 선형성을 전제로 하지만 실제 공정에서는 다양

표 4. 회귀 분석 결과(ANOVA 분석)

Table 4. ANOVA Analysis Results for Regression.

Pattern 

Size
Source DF Adj SS Adj MS F-value P-value



Regression 3 46.9595 15.6532 19.81 0.000

RPM 1 0.6399 0.6399 0.81 0.378

Exposure Time 1 21.0560 21.0560 26.65 0.000

Develop Time 1 26.0700 26.0700 33.00 0.000

Error 22 17.3803 0.7900 - -



Regression 3 50.9045 16.9682 26.03 0.000

RPM 1 0.3626 0.3626 0.56 0.464

Exposure Time 1 23.1686 23.1686 35.54 0.000

Develop Time 1 28.4863 28.4863 43.70 0.000

Error 22 14.3401 0.6518 - -



Regression 3 54.6585 18.2195 29.07 0.000

RPM 1 0.6302 0.6302 1.01 0.327

Exposure Time 1 25.9861 25.9861 41.46 0.000

Develop Time 1 29.0617 29.0617 46.37 0.000

Error 22 13.7881 0.6267 - -

표 5. Minitab 기반 최적 조건 분석 결과

Table 5. Optimization Results Based on Minitab.

RPM
Exposure 

Time (sec)

Develop 

Time (sec)
Desirability

3000.0 5.0 21.9794 0.9271

표 6. 머신러닝 모델 평가 지표

Table 6. Performance Metrics of Machine Learning Model.

Model Type MAE MSE RMSE  

Normalized 

RE Prediction 

Model

0.132269 0.046748 0.216213 0.979966

S/N Ratio 

Prediction 

Model

0.051767 0.006641 0.081494 0.999913

표 7. 머신러닝 기반 최적 조건 분석 결과

Table 7. Optimization Results Based on Machine Learning.

RPM
Exposure 

Time (sec)

Develop 

Time (sec)
Desirability

3524.87 25.26 15.77 0.9726

(23)
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표 8. 미니탭과 머신러닝 최적 조건 비교 및 실제 기계 세팅 값

Table 8. Comparison of Optimal Conditions from Minitab and Machine Learning with Actual Machine Settings.

RPM Exposure time (sec) Develop time (sec)

Minitab Optimal Conditions 3000.0 5.0 21.9794

Machine Setting 3000 5 22

ML Optimal Conditions 3524.87 25.26 15.77

Minitab Setting 3500 25 16

표 9. 미니탭 최적 조건에서 수행한 실험 데이터

Table 9. Experimental Data Obtained Under Minitab Optimal Conditions.

Pattern Size    Avg Diameter Stdev RE (%) S/N Ratio



102.09 101.93 100.05 101.3567 1.134431 1.356667 40.1176

102.34 102.2 102.24 102.26 0.072111 2.26 40.1941

101.84 102.22 102.23 102.0967 0.222336 2.096667 40.1803

101.22 101.94 101.89 101.6833 0.402036 1.683333 40.1451

102.14 101.74 102.07 101.9833 0.21362 1.983333 40.1706

101.84 103.87 102.23 102.6467 1.077234 2.646667 40.2274



50.87 51.32 51.27 51.15333 0.246644 2.306667 34.1776

50.92 51.72 51.31 51.31667 0.400042 2.633333 34.2054

51.24 50.99 49.5 50.57667 0.940762 1.153333 34.0805

51.2 51.73 50.56 51.16333 0.585861 2.326667 34.1797

51.23 51.05 50.56 50.94667 0.346747 1.893333 34.1425

50.92 51.81 51.14 51.29 0.463573 2.58 34.201



10.39 11.01 10.42 10.60667 0.349619 6.066667 20.5163

10.4 10.32 10.51 10.41 0.095394 4.1 20.3494

10.34 10.95 10.25 10.51333 0.380832 5.133333 20.4405

10.41 10.06 10.26 10.24333 0.175594 2.433333 20.2101

10.44 10.26 10.32 10.34 0.091652 3.4 20.2908

10.41 10.81 10.41 10.54333 0.23094 5.433333 20.4616

표 10. 머신러닝 최적 조건에서 수행한 실험 데이터

Table 10. Experimental Data Obtained Under Machine Learning Optimal Conditions.

Pattern Size    Avg Diameter Stdev RE (%) S/N Ratio



99.44875 98.6849 100.0294 99.38769 0.674343 0.612307 39.9469

99.75273 100.73 100.0606 100.1811 0.499654 0.181114 40.0158

99.94759 99.75273 99.78781 99.82938 0.103868 0.170624 39.9852

99.5228 100.805 100.084 100.1373 0.642747 0.137255 40.0121

100.0333 100.6218 100.6881 100.4477 0.360408 0.447732 40.0389

101.2 100.5517 100.2282 100.6599 0.494873 0.659949 40.0572



49.61688 48.98822 49.89938 49.50149 0.466415 0.99701 33.8928

49.88745 48.8967 49.80389 49.52935 0.549477 0.941306 33.8978

49.87551 49.81981 49.84766 49.84766 0.027852 0.304682 33.9529

49.19512 50.53601 51.24 50.32371 1.038839 0.647419 34.0373

51.62623 50.67527 50.35696 50.88615 0.66039 1.772304 34.1327

50.21372 50.48428 50.26942 50.32247 0.142872 0.644949 34.0353



9.85351 10.07324 9.81992 9.915557 0.137587 0.844435 19.9272

9.616134 9.681165 10.23622 9.844505 0.340787 1.554947 19.8691

9.97462 9.91759 9.741736 9.877982 0.121389 1.220183 19.894

9.912669 9.875678 9.76631 9.851553 0.076104 1.484475 19.8704

9.819599 9.827234 10.40093 10.01592 0.333448 0.159199 20.0186

10.65284 10.7691 10.77879 10.73358 0.070091 7.335756 20.6151

(24)
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한 비선형적 상호작용이 존재한다. 머신러닝 기법은 이

러한 관계를 효과적으로 학습하여 보다 정밀한 조건 예

측이 가능하다. 

변수 중요도 분석 결과, Exposure Time과 Develop 

Time이 ADI CD에 큰 영향을 미치는 주요 인자로 확인

되었다. Minitab 분석에서는 Develop Time이 22초로 

도출된 반면, 머신러닝 기반 조건에서는 16초로 감소하

였다. 이는 충분한 Exposure Time이 확보된 상태에서 

Develop Time이 과도하게 길어질 경우 오버 에칭

(over-etching) 현상이 발생할 수 있음을 반영한 결과

로 해석된다. 

RPM 조건에서도 차이를 보였다. ANOVA 분석 결과

에서는 RPM 단독 효과는 통계적으로 유의하지 않은 것

으로 나타났으나, 머신러닝 기반 최적화에서는 약 

3500rpm의 조건이 도출되었다. 이는 머신러닝 기법이 

변수 간의 비선형적 상호작용이나 복합적인 영향 관계

를 반영하기 때문으로 해석된다. 실제로 감광제 도포 속

도가 증가하면 감광제의 두께가 얇아지게 되고, 이는 보

다 균일한 패턴 전사에 유리한 조건이 될 수 있다. 머신

러닝 모델은 이러한 미세한 공정 변수 간의 관계를 학습

하여, 보다 적절한 RPM 값을 예측한 것으로 판단된다.

한편,  패턴에서는 머신러닝 기반 조건에서도 

Cpk가 1.33에 미치지 못하여 산업적 공정 안정성 기준

을 충족하지 못하는 결과가 나타났다. 이는 미세 패턴

일수록 공정 변수의 작은 변화에도 민감하게 반응하며, 

최적화가 더욱 까다롭다는 것을 의미한다[9]. 향후 연구

에서는 공정 노이즈에 강건한 모델 구조 설계, 변수 간 

고차 상호작용 반영을 위한 입력 변수 확장, 그리고 다

양한 공정 조건에 대한 고해상도 데이터 확보를 통해 

미세 패턴에서도 안정적인 공정 조건을 도출할 수 있는 

고도화된 최적화 기법 개발이 필요하다.

Ⅳ. 결 론

본 연구에서는 포토리소그래피 공정의 최적화를 위

해 DOE와 머신러닝 기법을 비교·분석하였다. 실험 결

과, 머신러닝 기반 최적 조건이 다양한 품질 지표에서 

전반적으로 더 우수한 성능을 보였다. 머신러닝은 변수 

간의 비선형적 상호작용을 반영하여 보다 정밀한 조건 

예측이 가능하며, 일부 패턴에서는 산업적 공정 안정성 

기준도 만족하였다. 다만, 미세 패턴에서는 여전히 개선 

여지가 존재하였다.

향후에는 공정 변수와 데이터 수집 범위를 확대하고, 

실시간 모니터링 및 양산 환경에서의 적용 가능성을 고

려한 연구를 통해 머신러닝 기반 최적화 기법의 실효성

을 더욱 강화할 필요가 있을 것이다. 또한, 본 연구는 수

십 마이크로미터 수준의 패턴을 대상으로 실험을 수행

하였기 때문에, 나노 단위 패턴에 대한 적용 가능성은 

후속 연구를 통해 추가적으로 검토되어야 한다. 다만, 

본 연구에서 분석한 공정 변수 간의 상호작용 구조나 최

적화 접근 방식은 패턴 크기와 무관하게 적용 가능한 보

편적 방법론으로, 그 의미는 유효하다고 판단된다. 이러

한 한계를 보완하고 적용 범위를 확대한다면, 머신러닝 

기반 최적화 기법은 차세대 반도체 공정에서 요구되는 

고정밀·고안정성 조건 확보에 기여할 수 있을 것이다.
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표 11. 최종 실험 성능 비교

Table 11. Final Performance Comparison of Experimental Results.

Pattern Size Method Avg Diameter Stdev RE (%) S/N ratio Cpk


Minitab 102.0044 0.520295 2.004444 40.1724 1.91914

ML 100.1072 0.462649 0.368163 40.0093 3.525216


Minitab 51.07444 0.497271 2.148889 34.1643 0.955585
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