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Ⅰ. 서 론

반도체 제조 공정에서 임계치수(Critical Dimension, 

CD)의 균일성은 소자의 전기적 특성과 생산 수율에 직

접적인 영향을 미치는 핵심 요소이다[1~3]. 제조 공정의 

주요 단계 중 포토리소그래피(Photolithography)와 식

각(Etch) 공정은 임계치수 제어를 위한 최적화 전략에

서 서로 다른 특성을 보인다.

포토리소그래피 공정은 스핀 코팅(Spin Coating), 노

광(Exposure), 현상(Development) 등 몇몇 결정된 변
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요 약

반도체 제조 공정에서 임계치수(Critical Dimension, CD)의 균일성은 소자의 전기적 특성과 생산 수율에 직결되는 핵심 요

소이다. 본 연구는 포토리소그래피와 식각 공정 각각의 임계치수 제어 특성을 고려하여, 두 공정을 통합적으로 최적화하는 새

로운 방법론을 제안한다. 포토리소그래피 단계에서는 스핀 코팅, 노광 시간, 현상 시간 변수에 따른 임계치수 제어를 회귀분석 

기법을 적용하여 최적화하였다. 식각 공정에서는 RF Power, CF4 Flow, O2 Flow 등 복합적으로 상호작용하는 변수들의 비선

형 특성을 정량화하기 위해 가우시안 프로세스 회귀(Gaussian Process Regression, GPR)를 도입하여 최적화하였다. 이를 통

해 전체 제조 공정에서 현상 후 검사(After-Develop Inspection) 임계치수와 식각 후 검사(After-Etch Inspection) 임계치수

를 최적화할 수 있는 통합 공정 제어 전략을 제시한다. 
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수들이 주로 작용하는 단계로, 이들 변수와 임계치수 

사이의 관계는 일정 범위 내에서 선형 또는 로그-선형 

관계로 모델링될 수 있다[4, 5]. 이에 따라 회귀분석 기

법을 활용한 최적화가 효과적으로 적용될 수 있다. 기

존 연구에서는 통계적 분석을 기반으로 한 포토리소그

래피 공정 최적화가 수행되어, 임계치수 제어에 기여한 

사례들이 보고되고 있다[6~8].

반면, 식각 공정은 RF Power, CF₄ Flow, O₂ 

Flow 등 다수의 변수가 복합적으로 상호작용하여 임계

치수에 영향을 미치며, 이들 변수 간의 관계는 비선형

적 특성을 보인다[9, 10]. 전통적인 선형 회귀나 단순 비

선형 모델로는 이러한 복잡한 공정 변동성을 충분히 설

명하기 어려우며, 최근에는 가우시안 프로세스 회귀

(Gaussian Process Regression, GPR)와 같은 확률적 

모델을 활용하여 비선형성을 정량화하는 방법이 제안되

고 있다[11~13]. 예를 들어, J. Wan과 S. McLoone 

(2018)은 가우시안 프로세스 회귀 기반 예측값과 신뢰

도 정보를 함께 활용해 런-투-런 제어를 구현하고, 예

측 분산을 이용해 EWMA(Exponentially Weighted 

Moving Average) 제어기의 가중치를 동적으로 조정하

는 방법을 제안하였다[11]. 그러나 이러한 연구는 주로 

단일 공정 단계(예: CMP, 증착)나 가상 계측(Virtual 

Metrology) 환경에서의 제어 성능 개선에 초점을 맞추

었으며, 포토리소그래피와 식각 공정을 아우르는 통합 

제어, 혹은 공정 간 상호작용을 고려한 복합 최적화는 

다루지 못했다. 또한 H. Chen과 J. Leclair(2021)는 드

라이 식각 공정에서 다중 임계치수를 동시에 만족시키

는 레시피 최적화 방법을 제시했지만, 이는 APC 

(Advanced Process Control) 수준의 식각 공정 최적

화에 국한되었고, 포토리소그래피와의 연계성을 고려하

지는 않았다[12]. 더 나아가 최근 머신러닝 기반 반도체 

공정 최적화에 대한 체계적 리뷰에서도, 대부분의 연구

가 단일 공정이나 국소적 변수 최적화에 머무르고 있다

는 한계가 지적된 바 있다[13]. 

즉, 기존 연구들은 주로 포토리소그래피와 식각 공정

을 독립적으로 최적화하는 데 집중하였고, 두 공정을 통

합하여 전체 임계치수 제어를 개선하려는 시도는 부족하

였다. 예컨대 신태호 등(2016)은 대면적 웨이퍼의 포토

레지스트(Photoresist, PR) 식각에서 산소 플라즈마와 

RF Power의 영향을 분석한 사례를 제시하였다[14]. 본 

논문은 이러한 한계를 극복하고자, 포토리소그래피 단

계부터 식각 단계까지 아우르는 일괄 최적화 체계를 구

축하여 임계치수 예측 및 최적화를 동시에 달성하는 방

법을 제안한다. 구체적으로, 포토리소그래피 단계에서

는 회귀분석 기법을 통해 최적 조건을 산출하고, 식각 

단계에서는 가우시안 프로세스 회귀를 적용하여 변수 

간 상호작용을 정량화하고 최적화를 수행한다. 이를 통

해 전체 제조 공정에서 현상 후 검사 임계치수

(After-Develop Inspection, ADI CD)와 식각 후 검사 

임계치수(After-Etch Inspection, ACI CD)를 모두 최

적화하는 데 기여하고자 한다.

Ⅱ. 통계적 기법을 통한 포토리소그래피 공정

최적화

포토리소그래피 공정에서 주요 변수인 스핀 코팅 속

도(Spin Coating Speed), 노광 시간(Exposure Time), 

현상 시간(Develop Time)을 대상으로 실험을 통해 데

이터를 수집하고 Minitab 기반의 통계적 기법을 활용하

여 현상 후 검사 임계치수의 최적 조건을 도출하였다. 

이를 위해 27가지 공정 조합을 설계하여 실험을 수행

하였으며, 수집된 데이터를 회귀분석(Regression 

Analysis)을 실시하고 반응 최적화 도구를 활용하여 최

적 공정 조건을 예측하였다. 

1. 포토리소그래피 실험 설계 및 공정 절차

본 연구에서는 포토리소그래피 공정 변수와 현상 후 

검사 임계치수 간의 관계를 정량적으로 분석하기 위해 

실험 설계를 수행하였다. 포토리소그래피 공정에서 스

핀 코팅 속도(Spin Coating Speed), 노광 시간

(Exposure Time), 현상 시간(Develop Time)을 주요 

변수로 선정하고, 각 변수별 세 가지 수준을 설정하여 

총 27가지(3×3×3)의 조합을 구성하였다. 스핀 코팅 

속도는 3000 rpm, 5000 rpm, 7000 rpm으로, 노광 시

간은 5초, 15초, 45초로, 현상 시간은 2초, 10초, 40초

로 각각 설정하였다. 

포토리소그래피 공정의 파라미터 설정은 실험실 장

비의 특성, 사용되는 포토레지스트의 화학적 및 물리적 

특성, 마스크 얼라이너의 광량, 웨이퍼 표면 상태 등 다

양한 요소를 종합적으로 고려하여 결정된다. 본 연구에

서는 스핀 코팅 속도를 3000, 5000, 7000 rpm으로 설

정하였는데, 이는 대학 및 연구소 환경에서 일반적으로 

활용되는 범위이다[15, 16]. 또한, 노광 시간은 5초, 15

초, 45초와 같이 폭넓게 설정되어, 언더노광(Under- 

exposure)에서 과노광(Over-exposure)에 이르는 전체 

공정 윈도우를 충분히 탐색할 수 있도록 하였다. 현상 
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시간 또한 2초, 10초, 40초와 같이 설정되어, 현상 단

계에서 발생할 수 있는 언더디벨롭(Under-develop)과 

오버디벨롭(Over-develop) 현상을 모두 포괄적으로 고

려할 수 있도록 하였다. 이와 같은 파라미터 범위의 설

정은, 실험실 장비 특성 및 포토레지스트 사양을 고려

하여 설정했다.

본 연구의 포토리소그래피 세부 공정 절차는 다음과 

같다. 웨이퍼를 SH Scientific 사의 Drying Oven에서 

고온 처리(Singe)하여 표면 수분을 제거하고, HMDS 

(Hexamethyldisilazane) 처리를 통해 포토레지스트와 

웨이퍼 사이의 밀착력을 향상시켰다. 이후 Prowin 사

의 스핀 코터(Spin Coater)를 사용하여 포토레지스트를 

균일하게 도포하였다. 스핀 코팅을 마친 웨이퍼는 90℃

에서 90초간 소프트 베이크(Soft Bake)를 진행하여 포

토레지스트 내부 솔벤트(Solvent)를 제거하고 막 밀도

를 높였다. 그다음, Prowin 사의 마스크 얼라이너

(Mask Aligner)를 이용해 노광(Exposure)을 수행하였

다. 이 때 사용된 마스크 디자인은 그림 1과 같으며, 그

림 1(a)는 웨이퍼 전체의 패턴, 그림 1(b)는 웨이퍼 내 

단일 다이 수준의 패턴 구조를 나타낸다. 노광 후에는 

110℃에서 90초간 PEB(Post Exposure Bake) 공정을 

적용하여, 스탠딩 웨이브(Standing Wave) 현상으로 인

한 포토레지스트 측벽(Sidewall)의 울퉁불퉁함을 완화

하고 내부 화학 반응을 안정화하였다. 이어서 현상액에 

노출하여 포토레지스트를 제거한 후 110℃에서 3분간 

하드 베이크(Hard Bake)를 진행해 잔류 용제를 최종적

으로 제거하고, 식각 공정 시 패턴이 변형되지 않도록 

포토레지스트의 내열성을 높였다. 

     

(a) (b)

그림 1. (a) 전체 마스크 패턴; (b) 단일 다이(Die) 패턴

Fig. 1. (a) Overall mask pattern; (b) Single die pattern.

위 과정을 모두 마친 웨이퍼에 형성된 포토레지스트 

패턴의 현상 후 검사 임계치수는 SUNNY KOREA사의 

MX4R 광학 현미경을 사용하여 측정하였다. 각 조건당 

한 웨이퍼에서 그림 1(a)와 같이 좌(L)·중(CL)·우(R) 위

치의 다이(Die)를 선정하였다. 그림 2의 (a)는 100μm 

패턴, (b)는 50μm 패턴, (c)는 10μm 패턴을 나타낸다. 

각 다이 내에서는 그림 2와 같이 100μm, 50μm, 10μm 

패턴의 임계치수를 측정하였다. 

(a) (b) (c)

그림 2. (a) 100μm 패턴; (b) 50μm 패턴; (c) 10μm 패턴

Fig. 2. (a) 100μm pattern; (b) 50μm pattern; (c) 10μm

pattern.

위와 같은 공정 절차를 통해 각 변수 조합(총 27개)

에 대해 패턴 형성과 현상 후 검사 임계치수 값을 획득

하였다. 표 1에서는 스핀 코팅 속도, 노광 시간, 현상 

시간을 포함한 27개 레시피의 핵심 공정 변수만을 정

리하여 제시하였다. 위치·패턴별 전체 현상 후 검사 임

계치수 측정 데이터는(27 레시피 × 9 측정치)은 부록 

A에 별도로 첨부하였다. 

표 1. 포토리소그래피 실험 설계

Table 1. Photolithography Experimental Design.

No.
RPM

(rpm)

Exposure Time 

(sec)

Develop Time 

(sec)

1 3000 5 2

2 3000 5 10

3 3000 5 40

4 3000 15 2

5 3000 15 10

6 3000 15 40

7 3000 45 2

8 3000 45 10

9 3000 45 40

10 5000 5 2

11 5000 5 10

12 5000 5 40

13 5000 15 2

14 5000 15 10

15 5000 15 40

16 5000 45 2

17 5000 45 10

18 5000 45 40

19 7000 5 2

20 7000 5 10

21 7000 5 40

22 7000 15 2

23 7000 15 10

24 7000 15 40

25 7000 45 2

26 7000 45 10

27 7000 45 40
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2. 포토리소그래피 최적 공정 조건 도출

수집된 실험 결과를 토대로 스핀 코팅 속도(RPM), 노

광 시간(Exposure Time), 현상 시간(Develop Time)을 

Minitab 기반의 회귀분석 기법으로 최적화한 공정조건

을 도출하였다. 일반적으로 RPM이 너무 높으면 포토레

지스트 막이 얇아지고 공정 변동에 민감해지며, 너무 낮

으면 두꺼운 막이 형성되어 임계치수 편차가 커질 위험

이 있다. 노광 시간 역시 언더노광과 과노광의 균형을 

맞추어야하며, 현상 시간도 언더디벨롭과 오버디벨롭을 

모두 회피하기 위한 적정 구간이 존재한다. 

그림 3은 Minitab 기반 스핀 코팅 속도, 노광 시간, 

현상 시간의 세 공정 인자를 회귀모델로 최적화한 결과

이다. 열마다 공정 인자를 하나씩 변화시키는 동안 다

른 인자는 고정하고, 행마다 개별 반응(50 µm, 10 µm, 

100 µm 패턴의 임계치수)과 종합 만족도(D)를 예측-

시뮬레이션한 값을 표시한다. 각 작은 그래프의 x축은 

해당 인자의 실험 범위, y축은 그 행에 대응하는 예측 

반응값을 나타내며, 검은 실선은 인자 수준 변화에 따

른 모델 응답 곡선, 파란 점선은 목표치, 빨간 수직선은 

최적 조건을 나타낸다. 최적점에서 개별 만족도는 각각 

0.9996(50 µm), 0.9483(10 µm), 0.9898(100 µm)로 

계산되었고, 이들의 종합 만족도는 0.9771을 기록함으

로써 설정한 공정 목표를 만족함을 확인하였다. 스핀 

코팅 속도 3000 rpm, 5초 노광 시간, 22초 현상시간이

라는 조합이 가장 마스크 패턴과 오차가 적은 임계치수

를 형성하는 조건으로 도출되었다.

식 (1)을 통해 개별 만족도가 계산되고, 식 (2)를 통

해 종합 만족도가 계산된다. 각 반응 변수에 대한 개별 

만족도를 산출하고, 이를 가중 기하 평균 방식으로 종

합 만족도가 계산되며 가중치가 같을 경우 식 (2)와 같

이 계산된다. 산출된 종합 만족도 0.9771은 0과 1 사

이의 척도에서 이상적인 목표인 1에 매우 근접함을 나

타내며, 이는 최적화된 설정이 모든 변수에 대해 전반

적으로 목표값을 효과적으로 달성함을 의미한다.

   
    ≤

 ≤ 

  


    ≤
 ≤ 

    ≺ 
    ≻ 

  (1)

   ×  × ⋯ ×  




                   (2)

식 (1)과 (2)에서 사용된 기호와 변수들의 정의를 명

확히 하기 위하여, 각 항목을 표 2에 정리하였다. 

표 2. 만족도 함수에 사용된 기호 및 변수 정의

Table 2. Definitions of symbols and variables used in the

desirability functions.

 i번째 반응의 예측 값  i번째 반응의 목표값


i번째 반응에 허용 

가능한 최소값


i번째 반응에

허용 가능한 최대값


i번째 반응에 대한 

만족도
 종합 만족도


i번째 반응의 만족도 

함수의 가중치
 i번째 반응의 중요도

 ∑ n 반응값의 수

III. 가우시안 프로세스 회귀를 통한 식각공정

최적화

반도체 제조 공정에서 식각(Etching) 단계 역시 RF 

Power, CF₄ Flow, O₂ Flow 등 다수의 공정 변수를 

동시에 제어해야 하며, 공정 변동성을 최소화하기 위해

서는 이들 변수 간의 상호작용을 종합적으로 고려하는 

최적화 전략이 필요하다. 본 장에서는 이러한 식각 공

정의 MIMO(Multiple-Input and Multiple-Output) 최

적화 문제에 대해 머신러닝 기법인 가우시안 프로세스 

회귀를 적용하여, 식각 후 검사 임계치수의 오차를 최

소화할 수 있는 공정 조건을 도출하는 과정을 상세히 

기술한다.

그림 3. 포토리소그래피 최적화 결과

Fig. 3. Photolithography optimization results.
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1. 식각 실험 설계 및 공정 절차

MINITAB의 Box-Behnken 실험설계법[17, 18]을 활

용하여 RF Power, CF4 Flow, O2 Flow의 3개 공정 변

수를 대상으로 총 15회의 식각 실험을 수행하였으며 

Center Point(130W, 15sccm, 15sccm)을 3회 반복하

였다. 이 때, 식각 이전 포토리소그래피 단계에서는 앞

서 도출한 최적의 조건을 적용한 후 식각을 진행하였

다. 각 실험에서는 설정된 변수 조합에 따라 식각 시간

을 세밀하게 조정하여, 각 조건에서 SiO2의 잔여 박막 

두께가 1500 Å에 도달하도록 하였다. 

Korea Vacuum Tech 사의 RIE(Reactive-Ion 

Etching) 장비를 사용하여 Dry Etch 공정을 수행하였

다. 식각 공정 절차는 그림 4와 같다. 공정 시작 전, 챔

버 내외의 기압을 일치시키기 위하여 질소 가스를 주입

함으로써 챔버를 대기압 상태(Vent)로 만들고, 웨이퍼

를 적재한 후, 챔버 내부를 진공상태로 전환한다. 이후, 

챔버 내의 압력을 20 mTorr의 기준 압력(base 

vacuum)으로 설정한 후 반응성 가스인 CF4와 를 주

입하고, RF 스위치를 작동시켜 고에너지 플라즈마를 

형성하여 식각을 수행한다. 이후 포토레지스트를 제거 

한 후 임계치수를 측정하였다.

식각을 마친 웨이퍼는 6개의 다이(L, CL, R, LT, 

CR, RB)에서 각 100μm, 50μm, 10μm 패턴의 임계치

수를 측정하였다. 표 3에서는 RF Power, CF4 Flow, 

O2 Flow을 포함한 15개 레시피의 핵심 공정 변수만을 

정리하여 제시하였다. 위치·패턴별 전체 식각 후 검사 

임계치수 측정 데이터는(15 레시피 × 18 측정치)은 부

록 A에 별도로 첨부하였다.  

2. 식각 최적 공정 조건 도출

본 연구에서는 수집된 15회의 식각 실험 데이터를 

기반으로, 식각 후 검사 임계치수를 안정적으로 확보할 

수 있는 최적의 공정 조건을 도출하기 위해 가우시안 

프로세스 회귀 모델을 적용하였다. 가우시안 프로세스 

회귀는 비모수적 확률 모델로, 데이터 간의 상관관계를 

학습하여 새로운 데이터의 예측값과 불확실성을 동시에 

제공하는 머신러닝 기법이다. 가우시안 프로세스 회귀

는 다양한 산업 분야에서 최적화 문제를 해결하는 데 

널리 활용되며, 특히 MIMO 환경에서 효과적인 성능을 

발휘한다[19~21].

우선, RF Power, CF4 Flow, O2 Flow의 3개 입력 

변수와 18개의 출력 변수(L100, L50, L10, CL100, 

…, RB10) 간의 비선형 관계를 정량적으로 분석하기 

표 3. 식각 실험 설계

Table 3. Etch Experimental Design.

No.
RF Power

(W)

CF4 Flow

(sccm)

O2 Flow

(sccm)

1 130 15 15

2 60 20 15

3 200 20 15

4 60 15 0

5 130 10 0

6 130 20 30

7 60 10 15

8 200 10 15

9 200 15 30

10 200 15 0

11 130 15 15

12 130 15 15

13 130 20 0

14 60 15 30

15 130 10 30

그림 4. 건식 식각 공정 절차 순서도

Fig. 4. Sequence flow of the dry-etch process.
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위해, 각 변수에 대한 평균 및 표준편차를 산출하고 이

를 바탕으로 표준화 과정을 수행하였다. 이러한 전처리 

과정을 통해 변수 간의 스케일 차이를 보완하였으며, 

학습 데이터의 분포 특성을 보다 정확하게 반영할 수 

있었다.

이후, Python의 GPy 라이브러리를 이용하여 

Intrinsic Coregionalization Model (ICM)을 기반으로 

하는 다중 출력 가우시안 프로세스 회귀 모델을 구축하

였다. 모델 구성 시, 기본적으로 RBF (Radial Basis 

Function) 커널을 사용하였다. 또한 GPy의 optimize 

함수를 활용하여 커널 파라미터와 각 출력의 노이즈 분

산을 최적화함으로써, Negative Log Marginal 

Likelihood (NLL)를 최소화하는 방향으로 모델을 학습

하였다.

최적의 공정 조건 도출은 Grid Search 기법을 적용하

여 수행되었다. Grid Search는 각 변수의 범위와 단계

(Step Size)를 지정하여 모든 가능한 조합에 대해 Cost 

함수를 계산하고, 그 중 Cost 함수 값이 최소인 조합을 

최적의 식각 조건으로 선정하는 방식으로 진행된다. 이 

때, 식 (3)에서 제시된 Cost 함수가 사용되는데, 이 

Cost 함수는 문헌 [8]의 식 (1)을 인용한 것이며 출력 

측 오차와 입력 측 오차를 동시에 고려한다. 구체적으

로, 각 실험 조건에 대해 예측된 출력 값과 목표 출력 값 

사이의 제곱 오차에, 해당 항목의 중요도를 나타내는 가

중치( )가 곱해지고, 입력 조건과 목표 입력 조건 사이

의 제곱 오차에는 별도의 가중치(β)를 곱하여 합산한다. 

목표 임계치수 값에 근접할수록 Cost 함수 값이 낮아지

도록 설계하였다. 구체적으로, 목표 임계치수 값은 각각 

100μm, 50 μm, 10μm으로 설정되었으며, 이는 해당 공

정에서 요구되는 패턴의 설계 사양에 따른 것이다. 또

한, 각 패턴(혹은 각 위치)에서의 임계치수 편차를 동일

한 중요도(가중치)로 취급하여 Cost 함수를 구성하였으

나, 필요에 따라 핵심 패턴(예: 10μm 패턴)의 편차를 더

욱 엄격히 평가하기 위해 가중치를 조정할 수 있는 유연

한 모델 구조를 채택하였다. 이러한 설정은 최적화 과정

에서 목표 임계치수에 대한 도달 정도를 정량적으로 평

가하는 데 기여하며, 공정 조건에 따른 민감도 분석 및 

후속 수정에 용이하도록 설계되었다. 

  
  




 

  



  
         (3)

식 (3)의 Cost 함수에서 와  는 각각 실제 출력과 

예측 출력, 와 는 입력 조건과 목표 입력 조건을 

의미하며, 와 는 실험 목적에 따라 설정된 가중치

이다.

또한, 전체 데이터셋의 오차(SSE, MSE, RMSE)와 

결정계수(R²) 등을 산출하여 모델의 적합도를 평가하였

으며, 이를 표 4에 나타내었다. SSE는 71.4614, MSE

는 0.2647, RMSE는 0.5145, R2는 0.9998로 산출되었

다. 이 결과를 바탕으로 가우시안 프로세스 회귀 모델

이 학습 데이터 내에서 매우 높은 예측 정확도를 보임

을 확인할 수 있었다.

이러한 가우시안 프로세스 회귀 모델의 Cost 함수가 

최소가 되는 조건과 식각 공정상의 이론을 고려하여 최

적의 조건은 RF Power 200W, 15 sccm CF4 Flow, 5 

sccm O2 Flow를 도출하였다.

표 4. 가우시안 프로세스 회귀 모델 평가 지표

Table 4. Evaluation metrics of the Gaussian Process

Regression model.

SSE MSE RMSE  

71.4614 0.2647 0.5145 0.9998

IV. 최적화 결과 분석

본 연구에서는 포토리소그래피 및 식각 공정에서 도

출한 최적 레시피의 타당성을 검증하기 위하여, 각 공

정에 대해 실제 공정 적용 후 측정된 임계치수 편차(실

제 측정 임계치수 값-목표 임계치수 값)를 정량적으로 

분석하였다. 포토리소그래피 공정은 총 12개의 웨이퍼

에서, 각 웨이퍼당 3개의 다이(좌, 중, 우)를 대상으로 

현상 후 검사 임계치수를 측정하였고, 식각 공정은 총 

3개의 웨이퍼에서, 각 웨이퍼당 6개의 다이(L, CL, R, 

LT, CR ... RB)를 대상으로 식각 후 검사 임계치수를 

측정하였다. 표 5는 포토리소그래피 공정에서 측정된 

현상 후 검사 임계치수 편차를 정리하여 나타낸 것이

고, 100μm, 50μm, 10μm 패턴에 대해 평균 편차를 산

출 후 표 7로 나타내었다. 표 6는 포토리소그래피 공정

에서 측정된 임계치수에 대해 목표값과의 차이를 Mean 

Error(ME)와 Mean Absolute Deviation(MAD)로 산출

하여 정리한 결과를 나타낸 것이며, 표 8은 식각 공정

에서 동일한 방식으로 산출된 ME와 MAD 값을 제시하

였다. 

Mean Error(ME)는 식 (4)와 같이 정의되며, 예측값

의 과대, 과소 경향을 반영한다.
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  


  




                           (4)

여기서 는 i번째 실측값, 는 i번째 예측값, n은 

데이터의 개수를 의미한다.

Mean Absolute Deviation(MAD)는 식 (5)와 같이 

정의되며, 예측값과 실측값 간 차이의 절댓값 평균으로 

오차의 크기를 나타낸다.

  
 
  



                         (5)

ME는 음수일 경우 모델이 실제값보다 과대 예측하

는 경향을, 양수일 경우 과소 예측하는 경향을 의미한

다. 반면 MAD는 오차의 방향성과 관계없이 순수한 오

차 크기를 나타내므로, 모델의 전반적인 예측 정확도를 

평가하는 지표로 활용된다.

포토리소그래피 공정에 대해 회귀분석 기법으로 도

출된 최적 조건(스핀 코팅 속도 3000 rpm, 노광 시간 

5초, 현상 시간 22초)을 적용한 결과, 100μm 패턴에서

는 평균 편차가 +1.981μm, 50μm 패턴에서는 +1.062

μm, 10μm 패턴에서는 +0.338μm가 측정되었다. 이 결

과는 최적 조건이 목표 임계치수 값(100μm, 50μm, 10

μm)에 비해 다소 큰 값을 산출함을 의미한다. 이러한 

양의 편차는 스핀 코팅, 노광, 현상 단계에서 포토레지

스트가 목표보다 다소 과도하게 형성되어 발생한 것으

로 추정된다. 한편, 이러한 편차가 설계 사양에서 ±2μ

m 정도의 허용 오차 범위를 고려할 때, 최적 조건에서

의 편차는 비교적 양호한 수준임을 시사한다. 그러나, 

향후 필요 시 공정 조건을 추가적으로 보완할 필요가 

있다.

식각 공정에서는 가우시안 프로세스 회귀 모델과 

Grid Search 기법을 통해 도출된 최적 조건(RF Power 

200 W, CF4 Flow 15 sccm, O2 Flow 5 sccm)을 적

용한 결과, 100μm 패턴의 평균 편차는 +0.039μm, 50

μm 패턴은 -0.126μm, 10μm 패턴은 -0.15μm로 도출

되었다. 이 결과는 가우시안 프로세스 회귀 기반 식각 

조건이 목표 임계치수 값에 1.5% 이내의 매우 근접한 

결과를 산출하였음을 보여준다. 다만, 본 연구는 공정 

진행 환경의 제약으로, 상대적으로 큰 패턴(μm 단위)에 

초점을 맞추었으므로, 향후 미세선폭(수십 nm~수백 

nm)에서 동일한 방법론의 적용 가능성에 대한 추가 연

구가 필요하다. 

표 5. 포토리소그래피 최적화 실험에서의 임계치수 편차

Table 5. CD Variation in Photolithography Optimization

Experiments.

L

100

(μm)

L

50

(μm)

L

10

(μm)

CL

100

(μm)

CL

50

(μm)

CL

10

(μm)

R

100

(μm)

R

50

(μm)

R

10

(μm)

1.83 0.94 0.14 1.82 0.87 0.06 1.96 0.99 0.08

2.27 1.27 0.31 1.95 1.11 0.15 2.02 1.01 0.21

2.09 1.05 0.19 1.93 0.93 0.08 0.05 1.08 0.03

2.34 0.87 0.41 2.2 1.32 0.49 2.24 1.27 0.42

1.84 0.92 0.39 2.22 1.72 1.01 2.23 1.31 0.42

2.12 1.29 0.38 2.14 1.04 0.45 2.3 1.36 0.44

1.22 1.24 0.4 1.94 0.99 0.32 1.89 -0.5 0.51

2.1 1.2 0.34 2.72 1.73 0.95 2.16 0.56 0.25

2.14 1.31 0.41 1.74 0.99 0.06 2.07 0.99 0.26

2.1 1.23 0.44 1.75 1.05 0.26 2.16 0.56 0.32

1.2 0.85 0.12 1.9 0.93 0.04 0.73 0.89 0.19

1.84 0.92 0.41 3.87 1.81 0.81 2.23 1.14 0.41

표 6. 포토리소그래피 목표값 기준 ME 및 MAD

Table 6. ME and MAD from target values in photolithography.

Pattern Size 

(µm)

Target CD 

(µm)
ME (µm) MAD (µm)

100 100 +1.981 1.981

50 50 +1.062 1.062

10 10 +0.338 0.338

표 7. 식각 최적화 실험에서의 임계치수 편차

Table 7. CD Variation in Etch Optimization Experiments.

L100

(μm)

L50

(μm)

L10

(μm)

CL100

(μm)

CL50

(μm)

CL10

(μm)

-0.18 -0.57 -0.57 0.22 0.01 -0.25

-0.09 -0.23 -0.23 -0.53 -0.42 -0.46

0.26 -0.15 -0.06 0.05 -0.05 -0.35

R100

(μm)

R50

(μm)

R10

(μm)

LT100

(μm)

LT50

(μm)

LT10

(μm)

0.11 -0.27 0.08 -0.04 0 -0.25

-0.31 -0.39 -0.05 0.1 -0.15 -0.05

0.87 -0.03 -0.15 0.3 -0.04 0.01

CR100

(μm)

CR50

(μm)

CR10

(μm)

RB100

(μm)

RB50

(μm)

RB10

(μm)

-0.25 -0.06 -0.25 -0.3 0.26 -0.5

0.46 0.11 -0.14 -0.53 0 0.05

0.53 -0.14 0.02 0.04 -0.14 -0.3
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표 8. 식각 목표값 기준 ME 및 MAD

Table 8. ME and MAD from target values in etch.

Pattern Size 

(µm)

Target CD 

(µm)
ME (µm) MAD (µm)

100 100 +0.039 0.039

50 50 ‑0.126 0.126

10 10 ‑0.150 0.150

V. 결 론

본 연구에서는 반도체 제조 공정에서 임계치수 제어 

정밀성을 확보하기 위해 포토리소그래피 공정과 식각 

공정을 연계 최적화하는 방법을 제시하였다. 포토리소그

래피 공정에서 스핀 코팅 속도, 노광 시간, 현상 시간을 

중심으로 총 27가지 조건을 실험하여 현상 후 검사 임

계치수를 측정하고, 통계적 기법(회귀분석)을 통해 최적 

조건(3000 rpm, 5초 노광, 22초 현상)을 도출하였다. 

식각 공정에서는 머신러닝 기법인 가우시안 프로세

스 회귀를 활용하여 RF Power, CF₄ Flow, O₂ Flow

와 임계치수 간의 관계를 모델링하였으며, 하이퍼파라

미터 최적화를 거쳐 예측 정확도가 높은 가우시안 프로

세스 회귀 모델을 구축하였다. 이후 Cost 함수를 정의

하여 목표 임계치수에 근접하는 공정 조건을 도출하였

다. 도출한 최적 조건이 목표 임계치수에 매우 근접한 

결과를 보임으로써, 식각 공정의 비선형적 특성과 불확

실성을 효과적으로 정량화할 수 있음을 확인하였다.

이러한 결과는 두 공정 최적화 방법론을 결합함으로

써, 전체 공정의 임계치수 균일성이 크게 향상될 수 있

음을 시사한다. 또한, 본 연구의 통합 최적화 시스템은 

실시간 피드백 시스템과 결합하여, 더욱 정밀한 공정 제

어 및 공정 안정성 확보에 기여할 가능성을 제공한다.

결론적으로, 본 연구는 포토리소그래피와 식각 공정

의 개별 최적화 결과를 통합함으로써, 반도체 제조 공

정에서의 임계치수 제어 정밀도를 획기적으로 개선할 

수 있음을 실험적으로 입증하였다. 향후 연구에서는 미

세선폭(nm급) 공정까지 적용 범위를 확장하고, 보다 광

범위한 공정 조건에서 추가 검증을 수행하여 제안된 방

법론의 범용성과 공정 안정성을 더욱 강화할 것이다.
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부록 A. 실험 데이터

Appendix A. Experimental Data.

표 A1. 포토리소그래피 실험 데이터

Table A1. Photolithography experimental data.

RPM(rpm)
Exposure 

Time(s)

Develop 

Time(s)
L100(μm) L50(μm) L10(μm) CL100(μm) CL50(μm) CL10(μm) R100(μm) R50(μm) R10(μm)

3000 5 2 100.48 49.42 11.19 100.37 50.59 11.05 101.58 50.71 11.32

3000 5 10 100.2367 50.21278 9.887652 100.387 50.10874 9.787465 100.1057 50.23975 9.964718

3000 5 40 99.43525 49.39587 9.159372 99.40828 49.36504 8.955145 99.41598 49.40743 9.036065

3000 15 2 102.3407 53.09507 13.49052 101.3003 50.7561 10.24216 101.5006 51.15299 10.73538

3000 15 10 99.79746 49.30724 9.236438 99.70498 49.38431 9.143958 99.71269 49.51532 9.194052

3000 15 40 97.94016 47.93931 7.444639 97.0616 47.24186 7.144079 98.25998 48.13583 7.903185

3000 45 2 99.62792 49.39587 9.772052 99.59324 49.50762 9.436812 99.12313 50.62508 9.352038

3000 45 10 98.19419 47.95692 8.01601 96.43948 46.75877 6.29995 98.33333 48.15017 7.73

3000 45 40 96.99604 46.64282 6.29222 97.40573 47.09889 6.957 96.81825 46.75877 6.184

5000 5 2 102.3297 52.12339 11.595 102.809 52.2548 12.84726 102.036 52.564 11.595

5000 5 10 102.1133 52.59492 11.73414 100.7451 50.57739 11.64911 102.1365 51.84511 12.60763

5000 5 40 101.6109 48.7763 9.12913 99.80976 49.54157 9.276 100.2813 49.50292 9.41514

5000 15 2 102.1056 52.18523 10.83 100.3045 50.13678 9.37649 100.3431 51.08 10.83

5000 15 10 99.20682 49.07777 8.89723 99.4078 49.02366 8.97453 99.16044 49.26329 8.84312

5000 15 40 95.02489 47.94919 7.63724 99.06 48.6217 7.74 97.35162 47.4622 7.2662

5000 45 2 103.6361 51.60548 10.11857 99.21455 49.19372 8.84312 99.7943 49.68844 9.36103

5000 45 10 98.33333 48.17336 8.03147 97.83861 47.43128 7.38215 98.33333 48.32796 8.20926

5000 45 40 96.61727 46.40319 5.67382 97.53714 47.16073 6.82559 96.625 46.38 6.184

7000 5 2 101.5258 51.39677 10.83746 100.7374 50.89432 11.01525 101.9742 51.99971 11.78052

7000 5 10 101.2166 50.82475 10.7447 100.405 50.22181 10.02581 100.4204 50.66242 10.28863

7000 5 40 99.99528 49.98991 9.91759 99.91025 50.08267 9.61612 100.1963 49.95899 9.54655

7000 15 2 101.7191 51.33493 10.73697 101.7423 51.49726 12.19794 100.4282 52.03063 11.4404

7000 15 10 99.3305 49.20918 9.17551 99.52375 48.37434 9.1987 99.44645 49.41016 9.05956

7000 15 40 98.91308 48.42072 8.503 97.80769 48.58305 7.73 98.944 48.25066 8.503

7000 45 2 100.575 50.71653 10.07219 99.73246 49.5493 9.276 100.6987 50.12905 10.53599

7000 45 10 98.43382 48.13471 8.07012 97.51 47.28441 6.89516 98.4802 48.1579 7.90779

7000 45 40 97.81542 47.59361 7.43626 98.34879 48.04195 7.5754 97.59898 47.153 6.84105

표 A2. 식각 실험 데이터

Table A2. Etch experimental data.

RF 

Power

(W)

CF4 Flow

(sccm)

O2 Flow

(sccm)

L100

(μm)

L50

(μm)

L10

(μm)

CL100

(μm)

CL50

(μm)

CL10

(μm)

R100

(μm)

R50

(μm)

R10

(μm)

LT100

(μm)

LT50

(μm)

LT10

(μm)

CR100

(μm)

CR50

(μm)

CR10

(μm)

RB100

(μm)

RB50

(μm)

RB10

(μm)

130 15 15 100.12 50.83 10.03 101.45 50.55 9.64 101.77 50.62 9.67 101.89 50.92 10.21 101.59 50.32 9.64 101.84 50.53 9.64

60 20 15 101.74 50.66 9.75 101.84 49.06 9.95 101.53 49.73 9.1 99.46 49.73 10.01 101.75 49.51 9.92 101.89 49.73 9.68

200 20 15 103.05 51.28 11.32 101.23 51.58 10.11 101.11 50.87 10.76 102.44 51.03 10.67 102.05 50.78 10.55 102.16 50.79 10.18

60 15 0 102.32 51.52 10.47 101.82 50.96 10.13 102.15 51.19 10.18 102.31 51.11 10.45 102.34 51.06 10.22 102.6 51.53 10.88

130 10 0 101.45 51.29 10.45 103 50.84 11 102.23 50.96 10.34 102.22 51.06 10.45 101.23 51.11 10.31 102.22 50.93 10.34

130 20 30 101.01 50.62 10.49 102.14 51.14 10.27 101.01 51.49 10.41 100.57 50.96 10.32 102.23 50.73 9.89 100.57 51.37 10.64

60 10 15 100.34 51.06 9.31 100.57 50.3 10.89 100.57 51.28 10.67 101.16 51.17 9.86 100.79 51.73 8.81 101.09 50.21 11.54

200 10 15 98.8 49.21 9.21 99.77 50.3 9.85 99.75 50.15 10.1 99.57 48.83 9.84 99.67 49.89 10.04 99.79 49.8 10.26

200 15 30 99.67 49.72 10.03 99.05 49.68 9.6 99.55 49.7 9.84 99.66 49.68 9.75 100.05 49.53 9.96 99.57 49.47 9.91

200 15 0 100.21 50.39 10.57 99.5 49.85 10.03 99.71 49.98 10.12 99.65 49.76 10.21 99.86 49.74 10.03 99.82 49.81 10.38

130 15 15 99.04 49.78 10.32 99.33 49.39 9.58 98.55 50.27 9.9 99.05 50.59 9.74 98.28 49.03 9.75 99.87 50.89 9.98

130 15 15 98.93 49.2 9.39 99.6 49.69 10.41 99.05 49.59 9.71 99.12 49.29 10.27 99.09 49.88 9.89 99.07 49.13 9.55

130 20 0 99.45 49.49 9.48 99.18 49.39 9.53 99.28 49.6 9.65 98.97 49.26 9.51 99.21 49.22 9.43 99.32 49.43 9.65

60 15 30 98.57 48.94 9.05 99.23 48.97 9.06 98.57 48.9 8.99 98.35 48.85 9.17 98.94 48.81 9.04 98.57 49.51 9.04

130 10 30 99.27 49.56 9.7 99.01 49.73 10.11 99.23 49.51 9.55 99.01 49.21 9.66 99.23 49.73 9.78 99.14 49.06 9.47
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