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Abstract

In semiconductor manufacturing, the uniformity of the Critical Dimension(CD) is a key factor that directly affects
the electrical characteristics of devices and production yield. This study proposes a novel integrated optimization
methodology that takes into account the distinct CD control characteristics of both photolithography and etching
processes. In the photolithography stage, CD control according to variables such as spin coating speed, exposure
time, and develop time is optimized using regression analysis. In the etching process, Gaussian Process Regression
(GPR) is introduced to quantify and optimize the nonlinear characteristics arising from the complex interactions
among variables such as RF power, CF; flow, and O, flow. This integrated process control strategy enables the
simultaneous optimization of ADI(After-Develop Inspection) CD and ACI(After-Etch Inspection) CD across the entire
manufacturing process.
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Table 1. Photolithography Experimental Design.
RPM Exposure Time | Develop Time
No.
(rpm) (sec) (sec)

1 3000 5 2

2 3000 5 10

3 3000 5 40

4 3000 15 2

5 3000 15 10

6 3000 15 40

7 3000 45 2

8 3000 45 10

9 3000 45 40

10 5000 5 2

11 5000 5 10

12 5000 5 40

13 5000 15 2

14 5000 15 10

15 5000 15 40

16 5000 45 2

17 5000 45 10

18 5000 45 40

19 7000 5 2

20 7000 5 10

21 7000 5 40

22 7000 15 2

23 7000 15 10

24 7000 15 40

25 7000 45 2

26 7000 45 10

27 7000 45 40
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T 2 UEE Sol AMS
Table 2. Definitions of symbols and variables used in the
desirability functions.

2 7|5 9 He Ho

g, | DA RSO oF g | T | DHA W] HEg
I A Hkg-o & U A wkg-ol

C bsw A | U] A8 ke Ao

{HA H-S- ki _
g, | ARETRE ) p o sgwss
-
A e R

) kool 2o %
7 §2m0] 7132 w; A g T2
w ZWZ‘ n ]?_%%):94 f[:

II. 7tAlet Z2 ML 2|7 E S8 438

2| &5}

e Az FANA 2 ZHEtching) @A 9A] RF
Power, CF, Flow, O, Flow & ‘:‘rTJ 34 HFE
Aol Alojlof s, 34 WEAdS HAistslr] 9
A ols WE 7] AeAgs TRHCRE aHshe
HA s} defo] Aasith 2 AolAe olHd A4 ¥
Ao MIMO(Multiple-Input and Multiple-Output) |
23t Al sl waled 71 7ReAIQE ZEA 2~
3|9AE A&k, A4 5 AA dAAFY Ak H
23 F e T4 1S EEske PSS A6

7]&35k),



20259 128 MAtseE =X He2d H12E

39

Journal of The Institute of Electronics and Information Engineers Vol.62, NO.12, December 2025

1AZE MY M 2 B MR

MINITAB®] Box-Behnken 2184A07 18lo. 3t
&-3}o] RF Power, CFy Flow, O, Flowe] 371 &4 #

FE ez F 1539 Az AgS F3sl9om
Center Point(130W, 15sccm, 15sccm)S 33] whe
Atk o] W, A7t o]d xEF AT dAeA =

i

[¢)

PN :f.
A E=ET HAH 9 174—% Age & A7kE 719l
o) ZF Ao AAE W 23 upet 27 Azt
S A E-%Ml ZAste], 7t 22104 Si0,9] zho] Bbp
FA7F 1500 Aol =2El== &3t

Korea Vacuum Tech AF] RIE(Reactive-Ion
Etching) gHE AH&3t] Dry Etch 4& 3k
oh A7F 3 dae OF 49 Eoh 3 AA A
W We]e] 7Iks dXA717] flste] dA 7k E S
gowx s 7|8k Ae(Vent) = REEaL, 9o]H
A 5, AW WHE-E R dggit o]
Hoouel dES 20 mTorre 7
vacuum) o2 -S4 7kl CEF 0,5
skal, RF AEAA A yA FepzekE
R 27} o} o]% xEHA A
] A
m} = 67IH ttol(L, CL, R, LT,
oA 7 10um ] HAA
Power, CF, Flow,

Atk
we ZHE 15 Ay B WS

e o

4%

[>
2o

=
=

3y

K

Q%
2~3
T

o~

AAEE
—=

+]

O
=

ot OBL hines
Oll
e

o
N
rﬁ -

Al

=
=

ol
_|_,
_\1

ks
T

47}

, RB)
%

g 57
%IOM
100pm, 50pm,
i 3ol4+= RF

A A€

mlo ul

O9 Flo

v
ar

Table 3. Etch Experimental Design.
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No. RF Power CF, Flow Oz Flow
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1 130 15 15
2 60 20 15
3 200 20 15
4 60 15 0
5 130 10 0
6 130 20 30
7 60 10 15
8 200 10 15
9 200 15 30
10 200 15 0
11 130 15 15
12 130 15 15
13 130 20 0
14 60 15 30
15 130 10 30
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Table 5. CD Variation in Photolithography Optimization
Experiments.
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100 50 10 100 50 10 100 | 50 10
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2.14 | 1.31 | 041 ] 1.74 | 0.99 | 0.06 | 2.07 | 0.99 | 0.26
2.1 1.23 | 044 | 1.75 | 1.05 | 0.26 | 2.16 | 0.56 | 0.32
1.2 | 085|012 | 1.9 | 093 | 0.04 | 0.73 ] 0.89 | 0.19
1.84 | 092 | 041 | 3.87 | 1.81 | 0.81 | 2.23 | 1.14 | 0.41
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Table 6. ME and MAD from target values in photolithography.

(1245)

Patt?;rr;1 )Slze Tar(guiz)CD ME (um) MAD (um)
100 100 +1.981 1.981
50 50 +1.062 1.062
10 10 +0.338 0.338
E 747 #mst AgolMel YRS Hit

Table 7. CD Variation

in Etch Optimization Experiments.

L100 L50 L10 CL100 | CL50 CL10
(um) (um) (um) (um) (um) (um)
-0.18 -0.57 -0.57 0.22 0.01 -0.25
-0.09 -0.23 -0.23 | -0.53 | -0.42 | -0.46
0.26 -0.15 -0.06 0.05 -0.05 | -0.35
R100 R50 R10 LT100 | LT50 LT10
(um) (um) (um) (um) (um) (um)
0.11 -0.27 0.08 -0.04 0 -0.25
-0.31 -0.39 -0.05 0.1 -0.15 | -0.05
0.87 -0.03 -0.15 0.3 -0.04 0.01
CR100 CR50 CR10 | RB100 | RB50 RB10
(um) (pm) (um) (pm) (um) (pm)
-0.25 -0.06 -0.25 -0.3 0.26 -0.5
0.46 0.11 -0.14 | -0.53 0 0.05
0.53 -0.14 0.02 0.04 -0.14 -0.3
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Table 8. ME and MAD from target values in etch.
Target CD
(um)
100
50
10

Pattern Size
(um)
100
50
10

ME (um) | MAD (um)

+0.039
-0.126
-0.150

0.039
0.126
0.150
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Appendix A. Experimental Data.

Al ZEE|2T T MY HolH

Table A1. Photolithography experimental data.

RPM(pm) | [XPosure | Develop | o000 | 150Gm) | L10Gm) | CLI00Gm) | CL50Gm) | CLIOGm) | R100Gm) |  R50Gum) RIOGm)

Time(s) Time(s)

3000 5 2 100.48 19.42 11.19 100.37 50.59 11.05 101.58 50.71 11.32
3000 5 10 1002367 | 50.21278 | 9.887652 100.387 50.10874 9.787465 100.1057 50.23975 9.964718
3000 5 40 99.43525 49.39587 9.159372 99.40828 49.36504 8.955145 99.41598 49.40743 9.036065
3000 15 2 102.3107 | 53.09507 1349052 | 101.3003 50.7561 10.24216 101.5006 51.15299 10.73538
3000 15 10 99.79746 | 49.30724 | 9.236438 | 99.70498 | 49.38431 | 9.143958 | 99.71269 19.51532 9.194052
3000 15 10 97.94016 | 47.93931 7.444639 97.0616 4724186 | 7.144079 | 98.25998 48.13583 7.903185
3000 45 2 99.62792 49.39587 9.772052 99.59324 49.50762 9.436812 99.12313 50.62508 9.352038
3000 45 10 08.19419 | 47.95692 8.01601 96.43948 | 46.75877 6.29995 98.33333 48.15017 773
3000 45 40 96.99601 | 46.64282 6.29222 97.40573 | 47.09889 6.957 96.81825 46.75877 6.184
5000 5 2 102.3297 | 52.12339 11595 102.809 52.2548 12.84726 102.036 52.564 11595
5000 5 10 102.1133 52.59492 11.73414 100.7451 50.57739 11.64911 102.1365 51.84511 12.60763
5000 5 10 101.6109 487763 9.12913 99.80976 | 49.54157 9.276 100.2813 19.50292 9.41514
5000 15 2 102.1056 | 52.18523 10.83 100.3045 | 50.13678 9.37649 100.3431 51.08 10.83
5000 15 10 99.20682 | 49.07777 8.89723 99.4078 19.02366 8.97453 99.16044 19.26329 3.81312
5000 15 40 95.02489 47.94919 7.63724 99.06 48.6217 7.74 97.35162 47.4622 7.2662
5000 45 2 103.6361 | 51.60548 10.11857 | 99.21455 | 49.19372 8.84312 99.7943 19.68844 9.36103
5000 15 10 9833333 | 48.17336 8.03147 97.83861 | 47.43128 7.38215 98.33333 18.32796 3.20926
5000 45 10 96.61727 | 46.40319 5.67382 97.53714 | 47.16073 6.82559 96.625 16.38 6.184
7000 5 2 101.5258 51.39677 10.83746 100.7374 50.89432 11.01525 101.9742 51.99971 11.78052
7000 5 10 101.2166 | 50.82475 10.7447 100.405 50.22181 10.02581 100.4204 50.66242 10.28863
7000 5 10 99.99528 | 49.98991 9.91759 99.91025 | 50.08267 9.61612 100.1963 19.95899 9.54655
7000 15 2 101.7191 51.33493 10.73697 101.7423 | 5149726 12.19794 100.4282 52.03063 11.4404
7000 15 10 99.3305 49.20918 9.17551 99.52375 48.37434 9.1987 99.44645 49.41016 9.05956
7000 15 10 98.91308 | 48.42072 8.503 97.80769 | 48.58305 773 98.944 48.25066 8.503
7000 15 2 100.575 50.71653 1007219 | 99.73246 19.5493 9.276 100.6987 50.12905 1053599
7000 45 10 9843382 | 48.13471 8.07012 97.51 47.28441 6.89516 98.4802 48.1579 7.90779
7000 45 40 97.81542 47.59361 7.43626 98.34879 48.04195 7.5754 97.59898 47.153 6.84105

E A2 Az AE ool

Table A2. Etch experimental data.

PoR\l:er CF; Flow | Oz Flow| L100 150 L10 | CL100 | CL50 | CL10 | R100 R50 R10 |LT100 | LT50 | LT10 | CR100 | CR50 | CR10 | RB100 | RB50 | RB10
W) (sccm) | (scem) | (um) (um) (um) (um) | um) | (um) (um) (um) (um) (um) (um) | (um) (um) (um) (um) (um) (um) (um)
130 15 15 |100.12| 50.83 | 10.03 | 10145 | 50.55 | 9.64 |101.77 | 50.62 | 9.67 |10L.89 | 50.92 | 10.21 | 10159 | 50.32 | 9.64 |101.84 | 50.53 | 9.64
60 20 15 |101.74 | 50.66 | 9.75 |101.84 [49.06| 9.95 |101.53| 49.73 | 9.1 | 99.46 | 49.73 | 10.01| 10175 | 49.51 | 9.92 |101.89 | 49.73 | 9.68
200 20 15 103.05| 51.28 | 11.32 | 101.23 | 51.58 | 10.11 | 101.11 | 50.87 | 10.76 | 102.44 | 51.03 | 10.67 | 102.05 | 50.78 | 10.55 | 102.16 | 50.79 | 10.18
60 15 0 |102.32| 51.52 | 1047 |101.82 | 50.96 | 10.13 | 102.15| 51.19 | 10.18 | 102.31 | 51.11 | 10.45 | 102.34 | 51.06 | 10.22 | 102.6 | 51.53 | 10.88
130 10 0 101.45| 51.29 | 10.45 103 | 50.84 11 102.23 | 50.96 | 10.34 |102.22 | 51.06 | 10.45| 101.23 | 51.11 | 10.31 | 102.22 | 50.93 | 10.34
130 20 30 |101.01| 50.62 | 1049 |102.14|51.14 | 10.27 | 101.01| 51.49 | 1041 | 10057 | 50.96 | 10.32 | 102.23 | 50.73 | 9.89 |100.57 | 51.37 | 10.64
60 10 15 |100.34 | 51.06 | 9.31 |100.57 | 50.3 | 10.89 |100.57 | 51.28 | 10.67 | 101.16 | 51.17 | 9.86 | 100.79 | 51.73 | 8.81 |101.09| 50.21 | 11.54
200 10 15 | 988 | 4921 | 9.21 | 99.77 | 50.3 | 9.85 | 99.75 | 50.15 | 10.1 | 99.57 | 48.83 | 9.84 | 99.67 | 49.89 | 10.04 | 99.79 | 49.8 | 10.26
200 15 30 | 99.67 | 49.72 | 10.03 | 99.05 | 49.68| 9.6 | 99.55 | 49.7 | 9.84 | 99.66 | 49.68 | 9.75 | 100.05 | 49.53 | 9.96 | 99.57 | 49.47 | 9.91
200 15 0 100.21 10.57 | 99.5 |49.85| 10.03 | 99.71 | 49.98 | 10.12 | 99.65 | 49.76 | 10.21 | 99.86 | 49.74 | 10.03 | 99.82 | 49.81 | 10.38
130 15 15 | 99.04 10.32 | 99.33 |49.39 | 958 | 98.55 | 50.27 | 9.9 | 99.05 | 50.59 | 9.74 | 98.28 | 49.03 | 9.75 | 99.87 | 50.89 | 9.98
130 15 15 98.93 9.39 99.6 [49.69 | 10.41 | 99.05 | 49.59 9.71 99.12 | 49.29 | 10.27 | 99.09 | 49.88 9.89 | 99.07 | 49.13 9.55
130 20 0 | 99.45 9.48 | 99.18 |49.39| 953 | 99.28 | 49.6 | 9.65 | 98.97 | 49.26 | 9.51 | 99.21 | 49.22 | 9.43 | 99.32 | 49.43 | 9.65
60 15 30 | 9857 9.05 | 99.23 |48.97| 9.06 | 9857 | 489 | 8.99 | 98.35 | 4885 | 9.17 | 98.94 | 48.81 | 9.04 | 9857 | 4951 | 9.04
130 10 30 | 99.27 9.7 | 99.01 |49.73| 10.11 | 99.23 | 49.51 | 9.55 | 99.01 | 49.21 | 9.66 | 99.23 | 49.73 | 9.78 | 99.14 | 49.06 | 9.47
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